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1 Review of quantum operations as presented in Lecture 6

In Lecture 6 we considered a primary quantum system Q, initially in state ρ, which is brought
into contact with an ancilla A (which can also be thought of as an environment or a measuring
apparatus), initially in state σ =

∑

l λk|ek〉〈ek|, where the states |ek〉 are the eigenstates of σ. The
two systems interact for a time, the interaction described by a unitary operator U acting on the
joint system QA. Then the ancilla is subjected to a von Neumann measurement, described by
orthogonal projectors

Pα =
∑

j

|fαj〉〈fαj | , (1)

where the states |fαj〉 make up an orthonormal basis for the ancilla, satisfying the completeness
relation

1A =
∑

α,j

|fαj〉〈fαj | =
∑

α
Pα . (2)

If the result of the measurement on the ancilla is α, i.e., the ancilla is observed to be in the subspace
Sα, the unnormalized state of the system after the measurement is obtained, from the standard
rules for a von Neumann measurement, by projecting the joint QA state into the subspace Sα and
then tracing out the ancilla,

trA(Pα Uρ⊗ σU †Pα) = trA(Pα Uρ⊗ σU †) ≡ Aα(ρ) , (3)

where Aα is a linear map on system density operators. Any linear map on operators is called a
superoperator, and the particular kind of superoperator defined by Eq. (3) is called a quantum
operation. This method of defining a set of quantum operation in terms of interaction with an
initially uncorrelated ancilla, followed by measurement on the ancilla, is called a measurement
model.

Inserting the forms of the ancilla projector Pα and the initial ancilla state σ leads to a form for
the operation Aα that only involves operators on the primary system Q :

Aα(ρ) =
∑

j,k

√

λk〈fαj |U |ek〉ρ〈ek|U †|fαj〉
√

λk =
∑

j,k

AαjkρA†αjk . (4)

The system operators
Aαjk ≡

√

λk〈fαj |U |ek〉 (5)
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are said to provide a Kraus decomposition (or operator-sum representation) of the operation Aα
and thus are called Kraus operators or operation elements. The Kraus operators (5) are defined by
the relative states in a decomposition of U |ψ〉 ⊗ |ek〉 relative to the ancilla basis |fαj〉:

U |ψ〉 ⊗ |ek〉 =
∑

j,k

1√
λk

Aαjk|ψ〉 ⊗ |fαj〉 . (6)

The Kraus operators satisfy a completeness relation:
∑

α,j,k

A†αjkAαjk =
∑

α,j,k

λk〈ek|U †|fαj〉〈fαj |U |ek〉 = 1
∑

k

λk〈ek|ek〉 = 1tr(σ) = 1 . (7)

The probability to obtain result α in the measurement on the ancilla is, from the standard rules
for an OP measurement (measurement described by orthogonal projectors),

pα = tr(Pα Uρ⊗ σU †) = tr
(

Aα(ρ)
)

= tr
(

ρ
∑

j,k

A†αjkAαjk

)

= tr(ρEα) . (8)

The operators
Eα ≡

∑

j,k

A†αjkAαjk (9)

are clearly positive and satisfy a completeness relation because of Eq. (7). Any measurement
model thus gives rise to a POVM that describes the measurement statistics. The normalized post-
measurement system state, conditioned on result α, is

ρα =
Aα(ρ)

tr
(

Aα(ρ)
) =

Aα(ρ)
pα

=
1
pα

∑

j,k

AαjkρA†αjk . (10)

If we don’t know the result of the measurement on the ancilla, the post-measurement state is
obtained by averaging over the possible measurement results:

ρ′ =
∑

α
pαρα =

∑

α
Aα(ρ) = trA(Uρ⊗ σU †) =

∑

α,j,k

AαjkρA†αjk ≡ A(ρ) . (11)

This is dynamics we would get for the system in the absence of any measurement on the ancilla
or, formally, for a completely uninformative measurement on the ancilla, i.e., one that has a single
result with Pα = 1A.

A primary quantum system that is exposed to an initially uncorrelated environment always
has dynamics described by a quantum operation, whether or not a measurement is made on the
environment. If we do make a measurement on the environment, the system state after the dynamics
is conditioned on the result of the measurement through the projection operator Pα 6= 1A in
Eq. (3); the corresponding quantum operation Aα is said to be trace decreasing because the trace
of the output is generally smaller than the trace of the input, the reduction factor being the
probability for the measurement result α. If we do not make a measurement on the environment,
we have an open-system dynamics described by the operation A of Eq. (11), which is said to be
trace preserving because the trace of the output is the same as the trace of the input. Formally
A is the quantum operation for a completely uninformative measurement on the ancilla, which
has Pα = 1A. Moreover, we can think of any trace-preserving open-system dynamics as coming
from an environment that “monitors” the system, even though we acquire none of the monitored
information; this monitoring destroys quantum coherence in Q, a process called decoherence.
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The way we treat the measurement result α, averaging over it if we don’t know the result,
suggests how we should think about the indices j and k that are summed over in the Kraus
decomposition of Aα. They represent information that is potentially available to us, but that we
don’t actually have. Indeed, we can imagine that there is a more capable agent than ourselves ,
who has two kinds of privileged information that we don’t have: before the interaction between
system and ancilla, this agent knows which eigenstate |ek〉 of σ applies to the ancilla, but only
reports to us that the ancilla occupies one of the eigenstates |ek〉 with probabilities given by the
eigenvalues of σ; after the interaction, this agent knows the result αj of a fine-grained measurement
in the basis |fαj〉, but only reports to us the subspace Sα corresponding to the result αj. After the
measurement, the agent attributes a post-measurement state

ραjk =
AαjkρA†αjk

pαjk
= Aαjk(ρ) (12)

to Q, where
pαjk = tr

(

Aαjk(ρ)
)

= tr(ρA†αjkAαjk) (13)

is the probability associated with initial state k and result αj. Not knowing the values of j and k,
we instead assign a post-meaurement state

ρα =
1
pα

∑

j,k

pαjkραjk =
1
pα

∑

j,k

AαjkρA†αjk =
1
pα
Aα(ρ) , (14)

where
pα =

∑

j,k

pαjk = tr
(

ρ
∑

j,k

A†αjkAαjk

)

(15)

is the probability for result α. Although there is a physical difference between the two kinds
of potentially available information symbolized by the indices j and k, there is no mathematical
difference between them, so we combine them into a single index in the following.

The above considerations show that any measurement model can be summarized by a set of
system operators Aαj that satisfy the completeness relation (7). We would like to know the converse,
i.e., that any set of superoperators Aα with Kraus operators that satisfy a completeness relation can
be realized by a measurement model. The converse is stated formally as the Kraus representation
theorem.

Kraus representation theorem. Given a set of superoperators with Kraus decompositions,

Aα(ρ) =
∑

j

AαjρA†αj , (16)

where the Kraus operators satisfy the completeness relation
∑

α,j

A†αjAαj = 1 , (17)

there exists an ancilla A with initial state |e0〉〈e0|, a joint unitary operator U on QA, and orthogonal
projectors Pα on A such that

Aα(ρ) = trA(Pα Uρ⊗ σU †) . (18)

Proof: The proof is simply a matter of reversing the steps that led from a measurement model
to Kraus operators, making sure that the operator U is unitary.
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Pick an ancilla whose Hilbert space has as many dimensions as the number of values of αj.
Notice that in constructing the measurement model, we need one ancilla dimension for each Kraus
operator. Take any ancilla pure state |e0〉〈e0| and any ancilla orthonormal basis |fαj〉. Partially
define a joint QA operator U by

U |ψ〉 ⊗ |e0〉 =
∑

α,j

Aαj |ψ〉 ⊗ |fαj〉 ⇐⇒ 〈fαj |U |e0〉 = Aαj . (19)

The operator U is defined on the D-dimensional subspaceHQ⊗R0, where R0 is the one-dimensional
ancilla subspace spanned by |e0〉. This partial definition preserves inner products,

(〈φ| ⊗ 〈e0|U †)(U |ψ〉 ⊗ |e0〉) =
∑

α,j
β,k

〈φ|A†βkAαj |ψ〉 〈fβk|fαj〉
︸ ︷︷ ︸

= δαβδjk

=
〈

φ
∣

∣

∣

∣

∑

α,j

A†αjAαj

︸ ︷︷ ︸

= 1

∣

∣

∣

∣

ψ
〉

= 〈φ|ψ〉 , (20)

which means that U maps the subspace HQ ⊗ R0 unitarily to a D-dimensional subspace S0 of
HQ ⊗HA. We can extend U to be a unitary operator on all of HQ ⊗HA by defining it to map the
subspace HQ ⊗ R⊥, where R⊥ is the ancilla subspace orthogonal to R0, unitarily to the subspace
orthogonal to S0.

With this definition of U , we have

Aα(ρ) =
∑

j

AαjρA†αj =
∑

j

〈fαj |U |e0〉ρ〈e0|U †|fαj〉 = trA

(

(

∑

j

|fαj〉〈fαj |
)

Uρ⊗ |e0〉〈e0|U †
)

. (21)

Defining a complete set of ancilla orthogonal projectors,

Pα =
∑

j

|fαj〉〈fαj | , (22)

we have
Aα(ρ) = trA

(

Pα Uρ⊗ |e0〉〈e0|U †
)

, (23)

as required. QED

Comments on the Kraus representation theorem.

1. The Kraus representation theorem guarantees that any single superoperator A with a Kraus
decomposition,

A(ρ) =
∑

j

AjρA†j , (24)

where the Kraus operators satisfy

E ≡
∑

j

A†jAj ≤ 1 , (25)

can be realized by a measurement model. The reason is that we can always consider two
superoperators defined by A1 = A and A2(ρ) =

√
1− Eρ

√
1− E. Together these two su-

peroperators satisfy the completeness relation of the representation theorem, and thus they
can be realized by a measurement model. In constructing this measurement model, the num-
ber of ancilla dimensions we need is given by the number of Kraus operators in the Kraus
decomposition of A plus one more dimension to accommodate the one Kraus operator in
A2 (if A is trace-preserving, we don’t need A2, so we don’t need that one extra dimension).
We conclude that we can characterize a quantum operation as any superoperator that has a
Kraus decomposition satisfying Eq. (25).
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2. The Kraus representation theorem says that any quantum operation can be realized by a
measurement model in which the ancilla begins in a pure state. It is clear why we need
only consider initial pure states for the ancilla: if we find a measurement model with the
ancilla initially in a mixed state σ, we can always purify σ into an even larger ancilla. More
important is that the theorem only holds for initial ancilla pure states: it is not guaranteed
that a quantum operation has a measurement model with an initial mixed-state ancilla.
Indeed, the question of whether a quantum operation has a mixed-state model is exactly the
question of which operations are extreme points in the convex set of operations, as is shown
in Appendix C.

3. Now that we have generalized from von Neumann measurements to quantum operations, we
should ask if we would get some even more general kind of dynamics if we allowed measure-
ments models in which the measurement on the ancilla was described by operations instead
of orthogonal projectors. The representation theorem allows us to answer this question in
the negative, because the quantum operations on the ancilla could always be modeled by
projection operators on a yet larger ancilla.

2 Completely positive maps

We now want to formulate an abstract set of properties that characterize any dynamics allowed
by quantum mechanics and then show that such a dynamics must be described in terms of a
quantum operation. This will give us an abstract characterization of quantum operations, akin to
our previous characterization of measurement statistics in terms of POVMs.

What we want to describe is a general quantum dynamics that has as input a quantum system Q
in input state ρ and that can produce one or more outcomes, which we will label by an index α.
Given input state ρ, outcome α occurs with probability pα|ρ, and the state of the system Q,
conditioned on outcome α, is the density operator ρα. Let us define a map, Aα, not yet assumed
to be linear, that takes in the input state ρ and outputs a positive operator that encodes both pα|ρ
and ρα in the way we are familiar with, i.e.,

pα|ρ = tr
(

Aα(ρ)
)

and ρα = Aα(ρ)/pα|ρ . (26)

This kind of map is trace decreasing, because the outcome probabilities are between 0 and 1,
inclusive, and are generally less than 1. If there is only one outcome, which therefore occurs with
probability one, we omit the index α and write the output state as

ρ′ = A(ρ) . (27)

This kind of map is trace preserving.
We will now argue that Aα should be convex linear, i.e.,

Aα

(

λρ1 + (1− λ)σ
)

= λAα(ρ) + (1− λ)Aα(σ) , 0 ≤ λ ≤ 1. (28)

The argument proceeds as follows. Suppose we know that the input state is either ρ1, occurring
with probability p1, or ρ2, occurring with probability p2. Thus the input state is the mixture
ρ = p1ρ1 + p2ρ2. The probability for outcome α can be written in two ways, the first being part of
the definition of our map,

pα|ρ = tr
(

Aα(ρ)
)

= tr
(

Aα(p1ρ1 + p2ρ2)
)

, (29)
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and the second coming from the rules of probability theory,

pα|ρ = pα|ρ1p1 + pα|ρ2p2 = p1tr
(

Aα(ρ1)
)

+ p2tr
(

Aα(ρ2)
)

= tr
(

p1Aα(ρ1) + p2A(ρ2)
)

. (30)

Thus, by using elementary probability theory, we get that the trace of both sides of Eq. (28) should
be the same.

We get to the stronger conclusion of convex linearity by a similar argument that writes the
output state ρα in two ways. The first of these ways is just the statement that, now knowing
whether the input state is ρ1 or ρ2, but knowing only the probabilities for these two inputs, the
input state is ρ = p1ρ1 + p2ρ2, so we apply the dynamics to ρ:

ρα =
Aα(ρ)
pα|ρ

=
Aα(p1ρ1 + p2ρ2)

pα|ρ
. (31)

This way can be summarized as mixing followed by dynamics.
The second way comes from arguing that we should get the same result from dynamics followed

by mixing. We should be able to get to the same ρα by applying the dynamics separately to the
two possible inputs, ρ1 and ρ2, yielding output states tr(Aα(ρ1))/pα|ρ1 and tr(Aα(ρ2))/pα|ρ2 , and
then mixing these two output states to reflect our lack of knowledge of which applies at the output.
But what probabilities should we use for the mixing at the output? Not the original probabilities,
p1 and p2, because once we know the outcome α, we know something more about the inputs, and
we revise our probabilities for the two inputs to reflect this knowledge. What we should do is to
mix the two output states with the updated probabilities for the two inputs, i.e., the probabilities
pρ1|α and pρ2|α. This gives the second way of writing ρα:

ρα = pρ1|α
Aα(ρ1)
pα|ρ1

+ pρ2|α
Aα(ρ2)
pα|ρ2

. (32)

The updated probabilities come from Bayes’s theorem:

pρ1|α =
pα|ρ1p1

pα|ρ
and pρ2|α =

pα|ρ2p2

pα|ρ
. (33)

Plugging these updated probabilities into Eq. (32) gives

ρα =
1

pα|ρ

(

p1Aα(ρ1) + p2Aα(ρ2)
)

, (34)

and equating the right-hand sides of Eqs. (31) and (32) gives us the desired convex linearity.
It turns out that a convex-linear map from trace-one positive operators to positive operators can

always be extended to a linear map on all operators, i.e., a superoperator. Though this extension
is trivial, it is annoyingly tedious to show that it works, so the demonstration is relegated to
Appendix A.

We now summarize the properties that we have so far found desirable for a map to describe a
general quantum dynamics. In proceeding, the index α just gets in the way, so we omit it, simply
calling the map A.

• Condition 1. A is a map from trace-one positive operators (density operators) to positive
operators.

• Condition 2. A is trace decreasing, i.e., tr(A(ρ)) ≤ 1 for all density operators ρ. Trace-
preserving dynamics is the special case where tr(A(ρ)) = 1 for all density operators ρ.
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• Condition 3. A is convex linear, i.e.,

A
(

λρ1 + (1− λ)σ
)

= λA(ρ) + (1− λ)A(σ) , 0 ≤ λ ≤ 1, (35)

and thus can be extended to be a superoperator, i.e., a linear map on operators.

Conditions 1 and 2 are immediate consequences of the way we set up our description of quantum
dynamics. Condition 3 is less firm, since we had to argue for it based on ideas of how the dynamics
handles a mixture of density operators, but the argument certainly seemed reasonable.

In Appendix B we develop the theory and and a useful notation for superoperators. We use
the resulting notation and terminology freely in the following, so it would be a good idea to be
mastering Appendix B as you proceed through the discussion. Using the terminology formulated
in Appendix B, we can summarize conditions 1–3 by the concise statement that A is a positive,
trace-decreasing superoperator.

It is easy to verify that any quantum operation, defined by a Kraus decomposition (24) satisfy-
ing (25), satisfies conditions 1–3. It is tempting to think that these three conditions are sufficient
to characterize a quantum operation, but they are not. The transposition superoperator T , which
takes a density operator ρ =

∑

j,k ρjk|ej〉〈ek| to its transpose relative to the orthonormal basis |ej〉,
i.e.,

T (ρ) =
∑

j,k

ρkj |ej〉〈ek| ⇐⇒ T =
∑

j,k

|ej〉〈ek| � |ej〉〈ek| , (36)

clearly satisfies conditions 1–3, but as we show below, it is not a quantum operation because it
cannot be written in terms of any Kraus decomposition. In Eq. (36) we introduce the � symbol so
that we can write a superoperator in an abstract form that does not include the operator that it
acts on; the � can be regarded as a place-holder, to be replaced by the operator on which S acts.

We need some additional condition on a map A to be a suitable quantum dynamics. The
additional condition can be motivated physically in the following way. Suppose that R is a “reference
system” that, though it does not itself take part in the dynamics, cannot be neglected because the
initial state ρ of Q is the marginal density operator of a joint state ρRQ. This certainly being one of
the ways to get a density operator for Q, we can’t avoid thinking about this situation. We want the
map IR ⊗A, where IR is the unit superoperator acting on R, to be a suitable quantum dynamics,
which means that it must take joint states ρRQ to positive operators, which can be normalized to
be output density operators. This requirement holds trivially for a quantum operation, because
the operators 1R ⊗Aj are a Kraus decomposition for the extended operation IR ⊗A, i.e.,

(IR ⊗A)(ρRQ) =
∑

j

(1R ⊗Aj)ρRQ(1R ⊗A†j) ≥ 0 , (37)

Thus we can add an additional requirement, which strengthens condition 1, to our list of conditions
for a map to describe a quantum dynamics:

• Condition 4. (IR⊗A)(ρRQ) ≥ 0 for all joint density operators ρRQ of Q and reference systems
R of arbitrary dimension. Such a map is said to be completely positive.

Our objective now is to show that any map that satisfies conditions 1–4 is a quantum operation.
Before turning to that task, however, let’s first see what goes wrong with an apparently satisfactory
map like the transposition superoperator. We want to consider the map IR⊗T , which is called the
partial transposition superoperator, because it transposes matrix elements in system Q only. Let’s
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suppose R has the same dimension as Q, and let’s apply the partial transposition superoperator to
an (unnormalized) maximally entangled state

|Ψ〉 ≡
∑

j

|fj〉 ⊗ |ej〉 =
∑

j

|fj , ej〉 , (38)

where the vectors |fj〉 comprise an orthonormal basis for R, and the vectors |ej〉 make up an
orthonormal basis for Q. Partially transposing |Ψ〉 gives

IR ⊗ T (|Ψ〉〈Ψ|) = IR ⊗ T
(

∑

j,k

|fj〉〈fk| ⊗ |ej〉〈ek|
)

=
∑

j,k

IR(|fj〉〈fk|)⊗ T (|ej〉〈ek|)

=
∑

j,k

|fj〉〈fk| ⊗ |ek〉〈ej |

=
∑

j,k

|fj , ek〉〈fk, ej | . (39)

It is easy to see that the normalized eigenvectors of this operator are the states |fj , ej〉 for j =
1, . . . , D and the states (|fj , ek〉 ± |fk, ej〉)/

√
2, for all pairs of indices. The states |fj , ej〉 have

eigenvalue 1, but the states (|fj , ek〉 ± |fk, ej〉)/
√

2 have eigenvalue ±1, showing that the opera-
tor (39) is not a positive operator (it is, in fact, a unitary operator). This shows that T cannot be
given a Kraus decomposition.

This example suggests that the problem with superoperators that are positive, but not com-
pletely positive is that, when extended to R, they don’t map all entangled states to positive oper-
ators, as we would like them to. Indeed, as we now show, the general requirements for complete
positivity follow from considering only one kind of reference system, one whose dimension is the
same as the dimension of Q, and only one kind of joint state, the maximally entangled state (38).
All we need to consider is how the extended map IR ⊗ A acts |Ψ〉〈Ψ|, i.e., the following operator
on RQ:

IR ⊗A(|Ψ〉〈Ψ|) . (40)

The demonstration is really just a re-write for general superoperators of what we have just done with
the transposition superoperator, but to make it more formal, we introduce some new terminology,
which is fleshed out further in Appendix B.

One way of thinking about Eq. (40) is that it is a map that takes in a superoperator A on Q
and spits out an operator on RQ. We have already had some experience with a similar map, the
VEC map, which takes in an operator A on Q and spits out the following vector on RQ,

|ΦA〉 ≡ 1R ⊗A|Ψ〉 =
∑

j

|fj〉 ⊗A|ej〉 =
∑

j,k

|fj〉 ⊗ |ek〉 〈ek|A|ej〉
︸ ︷︷ ︸

= Akj

. (41)

The VEC map is a one-to-one, linear map from the operators on Q to HRQ; we recover A from
|ΦA〉 via

〈fj , ek|ΦA〉 = 〈ek|A|ej〉 = Akj . (42)

It is easy to see that VEC preserves inner products,

〈ΦA|ΦB〉 = tr(A†B) = (A|B) . (43)
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Here we introduce operator “bras” and “kets” with rounded brackets, (A| = A† and |A) = A, so
that we can use Dirac-style notation for operators and their inner products when it is convenient
to do so. We can summarize the VEC map in the following way:

A = |A) ↔ |ΦA〉 and A† = (A| ↔ 〈ΦA| . (44)

One further aspect of VEC deserves mention. Given a density operator ρ for Q, applying VEC to√
ρ,

|Φ√ρ〉 = 1R ⊗
√

ρ |Ψ〉 =
∑

j

|fj〉 ⊗
√

ρ |ej〉 , (45)

generates a purification of ρ, i.e.,
trR(|Φ√ρ〉〈Φ√ρ|) = ρ . (46)

The analogous OP map (40) is a one-to-one, linear map from superoperators on Q to operators
on RQ. It takes a superoperator S on Q to the operator

IR ⊗ S(|Ψ〉〈Ψ|) =
∑

j,k

|fj〉〈fk| ⊗ S(|ej〉〈ek|) , (47)

and we recover S via its “matrix elements”
〈

fj , el

∣

∣

∣IR ⊗ S(|Ψ〉〈Ψ|)
∣

∣

∣fk, em

〉

=
〈

el

∣

∣

∣S(|ej〉〈ek|)
∣

∣

∣em

〉

≡ Slj,mk . (48)

These matrix elements clearly specify S. To see explicitly how, we write S abstractly in the following
way:

S =
∑

l,j,m,k

Slj,mk |el〉〈ej |
︸ ︷︷ ︸

= τα

� |ek〉〈em|
︸ ︷︷ ︸

= τ †β

=
∑

α,β

Sαβ τα � τ †β =
∑

α,β

Sαβ |τα)(τβ| . (49)

In the third and fourth forms, we let a single Greek index stand for a pair of Latin indices. The
fourth form uses our operator bra-ket notation (see Appendix B for more details). To see that the
form (49) is consistent with the matrix elements in Eq. (48), we calculate

〈

el

∣

∣

∣S(|ej〉〈ek|)
∣

∣

∣em

〉

=
〈

el

∣

∣

∣

∣

∑

n,p,q,r
Snp,qr|en〉〈ep|(|ej〉〈ek|)|er〉〈eq|

∣

∣

∣

∣

em

〉

= Slj,mk . (50)

Equation (49) is written in terms of an outer-product operator basis τα = τjk = |ej〉〈ek|, but the
third and fourth forms actually hold for any orthonormal operator basis. Just to drive home the
connection between a superoperator and its OP, we write Eq. (47) in yet another form,

IR ⊗ S(|Ψ〉〈Ψ|) =
∑

j,k

Slj,mk|fj〉〈fk| ⊗ |el〉〈em| , (51)

which should be compared with the abstract form of S in Eq. (49).
These tools in hand, we look at the action of OP in a slightly different way,

IR ⊗ S(|Ψ〉〈Ψ|) =
∑

α,β

Sαβ1R ⊗ τα|Ψ〉〈Ψ|1R ⊗ τ †β =
∑

α,β

Sαβ|Φτα〉〈Φτβ | . (52)

What the OP map does is to transform S represented in an orthonormal operator basis τα to an
equivalent operator represented in the orthonormal RQ basis |Φτα〉. Indeed, we find that

〈

ΦA

∣

∣

∣IR ⊗ S(|Ψ〉〈Ψ|)
∣

∣

∣ΦB

〉

=
∑

α,β

Sαβ〈ΦA|Φτα〉〈Φτβ |ΦB〉 =
∑

α,β

Sαβ(A|τα)(τβ|B) = (A|S|B) . (53)
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Thus the OP of a superoperator S operates in the same way as S would operate to the right and
left if we just did Dirac algreba using operator bra-ket notation. This left-right action of S is quite
distinct from the way we usually use S, called the ordinary action, where we put an operator in
place of the � symbol. The left-right action of S receives its physical significance in terms of the
OP’ed RQ operator IR ⊗ S(|Ψ〉〈Ψ|).

We now have the tools to deal summarily with complete positivity. We are trying to show
that any completely positive superoperator A has a Kraus decomposition. The key point is that
complete positivity requires that the OP of A, i.e., IR ⊗ A(|Ψ〉〈Ψ|), be a positive operator, but
Eq. (53) now shows this to be equivalent to the requirement that A be positive relative to its
left-right action, which we write as A ≥ 0. Any such left-right positive superoperator has many
Kraus decompositions, including its orthogonal decomposition, just like a positive operator has
many decompositions.

Indeed, if we have an ensemble decomposition of IR ⊗ A(|Ψ〉〈Ψ|), we can simply unVEC the
unnormalized states in the decomposition to get a Kraus decomposition of A. Explicitly, given an
ensemble decomposition,

IR ⊗A(|Ψ〉〈Ψ|) =
∑

α
|Φα〉〈Φα| , (54)

A has the Kraus decomposition

A =
∑

α
|Aα)(Aα| =

∑

α
Aα �A†α , (55)

where the Kraus operators Aα are recovered from the ensemble vectors |Φα〉 using Eq. (42), i.e.,
(Aα)kj = 〈fj , ek|Φα〉.

It is instructive to see how this works out for the transposition superoperator (36):

T =
∑

j,k

τjk � τjk =
∑

j,k

|τjk)(τ
†
jk| =

∑

j,k

|τjk)(τkj | . (56)

The left-right eigenoperators of T are clearly the operators τjj for j = 1, . . . , D—these operators
have eigenvalue 1—and the operators (τjk ± τkj〉)/

√
2, for all pairs of indices—these operators

have eigenvalues ±1. The negative eigenvalues shows that T is not completely positive. This
demonstration is clearly just a re-write of the previous one, which used the OP’ed state directly,
but it illustrates how the left-right action tells us about the OP of a superoperator.

Now we get for free two important results. First, a completely positive superoperator has a
left-right eigendecomposition with no more than D2 eigenoperators with nonzero eigenvalue. This
means that any quantum operation has a Kraus decomposition with no more than D2 Kraus
operators. Via our proof of the Kraus representation theorem, we can construct a measurement
model in which the ancilla has no more than D2 dimensions if the operation is trace-preserving
and no more than D2 + 1 dimensions if the operation is strictly trace-decreasing. Second, by
generalizing the HJW theorem for decompositions of positive operators, we get a similar theorem
for Kraus decompositions: two sets of Kraus operators, {Aα} and {Bα}, give rise to the same
completely positive superoperator if and only if they are related by a unitary matrix Vβα, i.e.,

Bβ =
∑

α
VβαAα (57)

(in the standard way, if one Kraus decomposition has a smaller number of operators, it is extended
by appending zero operators).
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An example will show the importance of this decomposition theorem. Consider a von Neumann
measurement in the basis |ej〉. If we forget the result of the measurement, the trace-preserving
operation that describes the process is

A =
D

∑

j=1

|ej〉〈ej | � |ej〉〈ej | =
∑

j

Pj � Pj . (58)

This operation corresponds to writing the input density operator in the basis |ej〉 and then setting
all the off-diagonal terms to zero. Physically, it is the ultimate decoherence process: it wipes out
all the coherence in the basis |ej〉 and replaces the input state with the corresponding incoherent
mixture of the basis states |ej〉〈ej |. Though it would seem to have nothing to do with unitary
evolutions, we can nonetheless write this operation as a mixture (convex combination) of unitary
operators. If we transform the projectors Pj using the unitary matrix

Vkj =
1√
D

e2πikj/D , (59)

we get new Kraus operators

1√
D

Uk =
∑

j

VkjPj =
1√
D

∑

j

e2πikj/D|ej〉〈ej | , (60)

The operators Uk are clearly unitary operators—they’re written in their eigendecomposition with
eigenvalues that are phases—in terms of which the operation becomes

A =
1
D

D
∑

k=1

Uk � U †
k . (61)

Thinking in terms of this Kraus decomposition, A describes a process where one chooses one of
the D unitaries out of a hat and applies it to the system, not knowing which unitary has been
chosen—all have equal probability 1/D.

What we have shown in this section is that a superoperator is completely positive if and only
if it is a positive superoperator relative to the left-right action. For a quantum operation we must
add the trace-decreasing condition, which now can be put in the compact form

A×(1) =
∑

α
A†jAj ≤ 1 , (62)

with equality if and only if the operation is trace preserving (see Appendix B for notation).
We can now summarize the three equivalent ways we have developed for describing a quantum

operation:

• A quantum operation is a superoperator that can be realized by a measurement model.

• A quantum operation is a superoperator with a Kraus decomposition that satisfies the trace-
decreasing condition (25).

• A quantum operation is a trace-decreasing, completely positive superoperator.

Additional topics to be added at some future time:
1. Additional stuff on extended operations acting on purifications instead of on the maximally

entangled state.
2. Section on POVMs, including Neumark extension (do qubit cases like trine and cardinal

directions) and freedom in the operations that go with a POVM element.
3. Section on convex structures: POVM elements, POVMs, and operations.
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Appendix A. Convex linearity implies linearity

Consider a convex linear map A from density operators (trace-one positive operators) to positive
operators, as in Eq. (28).

We first extend the action of A to all positive operators E in the obvious way, i.e.,

A(E) ≡ tr(E)A
(

E
tr(E)

)

. (63)

This extension is clearly linear under (i) scalar multiplication by positive numbers,

A(aE) = tr(aE)A
(

aE
tr(aE)

)

= aA(E) , (64)

and (ii) addition,

A(E + F ) = tr(E + F )A
(

E + F
tr(E + F )

)

(definition of extension)

= tr(E + F )A
(

tr(E)
tr(E + F )

E
tr(E)

+
tr(F )

tr(E + F )
F

tr(F )

)

(rewrite)

= tr(E)A
(

E
tr(E)

)

+ tr(F )A
(

F
tr(F )

)

(convex linearity)

= A(E) +A(F ) (definition of extension) . (65)

The third equality is the crucial one; it follows from convex linearity on unit trace positive operators.
We now extend the action of A to all Hermitian operators in the following way. We first extend

the action of A to the difference between two positive operators by defining

A(E − F ) ≡ A(E)−A(F ) . (66)

Of course, since the difference can be written in many ways, we have to check that we get the
same output no matter how the difference is written; i.e., we have to check that A(E1)−A(F1) =
A(E2)−A(F2) when E1−F1 = E2−F2. Since E1+F2 = E2+F1, we have A(E1)+A(F2) = A(E1+
F2) = A(E2 +F1) = A(E2)+A(F1), which establishes the result we want. The eigendecomposition
of a Hermitian operator,

H =
∑

λ

λPλ , (67)

allows us to write H as a difference between two positive operators,

H =
∑

λ≥0

λPλ

︸ ︷︷ ︸

≡ H+

+
∑

λ<0

λPλ

︸ ︷︷ ︸

≡ −H−

= H+ −H− . (68)

Thus the action of the extended map on a Hermitian operator H is

A(H) = A(H+)−A(H−) . (69)

The extension is linear under (i) scalar multiplication by real numbers,

A(aH) =
a
|a|

(

A(|a|H+)−A(|a|H−)
)

= a
(

A(H+)−A(H−)
)

= aA(H) , (70)
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and (ii) addition,

A(H + K) = A(H+ −H− + K+ −K−)

= A
(

(H+ + K+)− (H− + K−)
)

= A(H+ + K+)−A(H− + K−) [Eq. (66)]

= A(H+) +A(K+)−A(H−)−A(H−) [Eq. (65)]

= A(H+ −H−) +A(K+ −K−) [Eq. (66)]

= A(H) +A(K) . (71)

This establishes that the extended map acts linearly on the real vector space of Hermitian operators.
Though this is really all we need, the map can be extended to a linear map on the complex vector
space of all operators by the standard complexification.

Appendix B. Superoperators

The space of linear operators acting on a D-dimensional Hilbert space H is a D2-dimensional
complex vector space. We introduce operator “kets” |A) = A and “bras” (A| = A†, distinguished
from vector bras and kets by the use of smooth brackets. The natural inner product on the space of
operators can be written as (A|B) = tr(A†B). An orthonormal basis |ej〉 induces an orthonormal
operator basis

|ej〉〈ek| = τjk ≡ τα , (72)

where the Greek index is an abbreviation for two Roman indices. Not all orthonormal operator bases
are of this outer-product form. In the following, τα denotes the operators in a general orthonormal
operator basis, which can be specialized to an outer-product basis.

The space of superoperators on H, i.e., linear maps on operators, is a D4-dimensional complex
vector space. A superoperator S is specified by its “matrix elements”

Slj,mk ≡
〈

el

∣

∣

∣S(|ej〉〈ek|)
∣

∣

∣em

〉

, (73)

for the superoperator can be written in terms of its matrix elements as

S =
∑

l,j,m,k

Slj,mk |el〉〈ej |
︸ ︷︷ ︸

= τα

� |ek〉〈em|
︸ ︷︷ ︸

= τ †β

=
∑

α,β

Sαβ τα � τ †β =
∑

α,β

Sαβ |τα)(τβ| . (74)

The ordinary action of S on an operator A is obtained by dropping an operator A into the center
of this representation of S, in place of the � (read “o-dot”), i.e.,

A(A) =
∑

α,β

Aαβ ταAτ †β . (75)

The ordinary action is used above to generate the matrix elements, as we see from
〈

el

∣

∣

∣S(|ej〉〈ek|)
∣

∣

∣em

〉

=
〈

el

∣

∣

∣

∣

∑

n,p,q,r
Snp,qr|en〉〈ep|(|ej〉〈ek|)|er〉〈eq|

∣

∣

∣

∣

em

〉

= Slj,mk . (76)

The symbol � is used in the abstract representation (74) of a superoperator, because this abstract
representation really does involve a tensor product of operators; since it is not a tensor product
between different subsystems, however, we denote it by a symbol other than ⊗.

13



There is clearly another way that S can act on an operator A, the left-right action,

S|A) ≡
∑

α,β

Sαβ |τα)(τβ|A) =
∑

α,β

ταSαβ tr(τ †βA) , (77)

in terms of which the matrix elements are

Sαβ = (τα| S|τβ) =
(

|el〉〈ej |
∣

∣

∣S
∣

∣

∣|em〉〈ek|
)

=
〈

el

∣

∣

∣S(|ej〉〈ek|)
∣

∣

∣em

〉

= Slj,mk . (78)

This expression, valid only in an outer-product basis, provides the fundamental connection between
the two actions of a superoperator.

With respect to the left-right action, superoperator algebra works just like Dirac operator
algebra. Multiplication of superoperators R and S is given by

RS =
∑

α,β,γ

RαγSγβ |τα)(τβ| , (79)

and the “left-right” adjoint, defined by

(A|S†|B) = (B|S|A)∗ , (80)

is given by
S† =

∑

α,β

S∗αβ |τβ)(τα| =
∑

α,β

S∗βα|τα)(τβ | =
∑

α,β

S∗αβτβ � τ †α . (81)

The question is whether we can give a physical interpretion to the left-right action, given that
the ordinary action of a superoperator is the one that is used by a quantum operation to map
input states to unnormalized output states. The chief answer is provided by the proof of complete
positivity, which shows that under its left-right action, a superoperator is equivalent to the operator
obtained by applying IR ⊗ S to an (unnormalized) maximally entangled state.

With respect to the ordinary action, superoperator multiplication, denoted as a composition
R ◦ S, is given by

R ◦ S =
∑

α,β,γ,δ

RγδSαβ τγτα � τ †βτ †δ . (82)

The adjoint with respect to the ordinary action, denoted by S×, is defined by

tr
(

[S×(B)]†A
)

= tr
(

B†S(A)
)

. (83)

In terms of a representation in an operator basis, this “cross” adjoint becomes

S× =
∑

α,β

S∗αβ τ †α � τβ . (84)

Notice that
(R ◦ S)† = R† ◦ S† and (RS)× = R×S× . (85)

We can formalize the connection between the two kinds of action by defining an operation,
called “sharp,” which exchanges the two:

S#|A) ≡ S(A) . (86)

Simple consequences of the definition are that

(S#)† = (S×)# , (87)

(R ◦ S)# = R#S# . (88)
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The matrix elements of S# are given by

S#
lj,mk =

(

|el〉〈ej |
∣

∣

∣S#
∣

∣

∣|em〉〈ek|
)

= tr
(

|ej〉〈el|S(|em〉〈ek|)
)

=
〈

el

∣

∣

∣S(|em〉〈ek|)
∣

∣

∣ej

〉

= Slm,jk , (89)

which implies that
S# =

∑

lj,mk

Slj,mk|el〉〈em| � |ek〉〈ej | . (90)

Two important superoperators are the identity operators with respect to the two kinds of action.
The identity superoperator with respect to the ordinary action is

I = I � I =
∑

j,k

|ej〉〈ej | � |ek〉〈ek| . (91)

This superoperator is Hermitian in both senses, i.e., I = I† = I×. It is the identity superoperator
relative to the ordinary action because I(A) = A for all operators A, but its left-right action gives
I|A) = tr(A)I.

The identity superoperator with respect to the left-right action is

I =
∑

α
|τα)(τα| =

∑

j,k

|ej〉〈ek| � |ek〉〈ej | . (92)

This superoperator is also Hermitian in both senses, i.e., I = I† = I×. It is the identity superoper-
ator relative to the left-right action because I|A) = A for all operators A, but its ordinary action
gives I(A) = tr(A)I, which means that I/D is the completely depolarizing operation that takes all
input states to the maximally mixed state. Since sharping exchanges the two kinds of action, it is
clear that I# = I.

Another important superoperator is the one that transposes operators in a particular orthonor-
mal basis |ej〉. The ordinary action of this transposition superoperator is given by

T (|ej〉〈ek|) = |ek〉〈ej | ⇐⇒ T (A) =
∑

j,k

Akj |ej〉〈ek| , (93)

so the superoperator has the abstract form

T =
∑

j,k

|ej〉〈ek| � |ej〉〈ek| =
∑

j,k

τjk � τjk =
∑

j,k

|τjk)(τkj | . (94)

The transposition superoperator is Hermitian in both senses and is unchanged by sharping, i.e.,
T = T † = T × = T #. In addition to satisfying T ◦ T = I, the transposition superoperator has the
property that

I ◦ T = I , (95)

which in view of Eq. (88), is equivalent to IT = I.
We now turn to cataloguing some general properties of superoperators that characterize the

most interesting classes of superoperators.
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A superoperator is left-right Hermitian, i.e., A† = A, if and only if it has an eigendecomposition
relative to the left-right action,

A =
∑

α
µα|τα)(τα| =

∑

α
µατα � τ †α , (96)

where the µα are real (left-right) eigenvalues and the operators τα are orthonormal (left-right)
eigenoperators. Notice that for a left-right Hermitian operator, the cross-adjoint is given by

A× =
∑

α
µατ †α � τα =

∑

α
µα|τ †α)(τ †α| , (97)

which means that A× is also left-right Hermitian, with the same left-right eigenvalues as A, but
with the corresponding eigenoperators being τ †α.

There is another useful way to characterize left-right Hermiticity: a superoperator is left-right
Hermitian if and only if it maps all Hermitian operators to Hermitian operators under the ordinary
action. This is the first hint that the left-right action has important consequences for the more
physical ordinary action. Before proving this result, however, we need to do a little preliminary
work. Let S be a superoperator, and let |ej〉 be an orthonormal basis, which induces an orthonormal
operator basis |ej〉〈ek|. Notice that

〈

el

∣

∣

∣S†(|ej〉〈ek|)
∣

∣

∣em

〉

=
(

|el〉〈ej |
∣

∣

∣S†
∣

∣

∣ |em〉〈ek|
)

=
(

|em〉〈ek|
∣

∣

∣S
∣

∣

∣ |el〉〈ej |
)∗

=
〈

em

∣

∣

∣S(|ek〉〈ej |)
∣

∣

∣el

〉∗

=
〈

el

∣

∣

∣[S(|ek〉〈ej | )]†
∣

∣

∣em

〉

. (98)

Here the first and third equalities follow from relating the ordinary action of a superoperator
to its left-right action [Eq. (78)], the second equality follows from the definition of the left-right
adjoint of S [Eq. (80)], and the fourth equality follows from the definition of the operator adjoint.
Equation (98) gives the relation between the operator adjoint and the left-right superoperator
adjoint:

S†(|ej〉〈ek|) = [S(|ek〉〈ej |)]† . (99)

Thus we have that S = S†, i.e., S is left-right Hermitian, if and only if

S(|ej〉〈ek|) = [S(|ek〉〈ej |)]† (100)

for all j and k. This result allows us to prove the desired theorem easily.

Theorem. A superoperator A is left-right Hermitian if and only if it maps all Hermitian
operators to Hermitian operators.

Proof: First suppose A is left-right Hermitian, i.e., A = A†. This implies that A has a complete,
orthonormal set of eigenoperators τα, with real eigenvalues µα. Using the eigendecomposition (96),
we have for any Hermitian operator H,

A(H) =
∑

α
µαταHτ †α = A(H)† . (101)
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Now suppose A maps all Hermitian operators to Hermitian operators. Letting τjk = |ej〉〈ek|,
it follows that

A(τjk) = A
(

1
2
(τjk + τkj) + i

−i
2

(τjk − τkj)
)

= A
(

1
2
(τjk + τkj)

)

+ iA
(−i

2
(τjk − τkj)

)

(linearity of A)

=
[

A
(

1
2
(τjk + τkj)

)]†
+ i

[

A
(−i

2
(τjk − τkj)

)]†
(the assumption)

=
[

A
(

1
2
(τjk + τkj)

)

− iA
(−i

2
(τjk − τkj)

)]†
(antilinearity of operator adjoint)

=
[

A
(

1
2
(τjk + τkj)− i

−i
2

(τjk − τkj)
)]†

(linearity of A)

= [A(τkj)]† . (102)

Equation (100) then implies that A = A†. QED

As noted above, if A is left-right Hermitian, A× is also left-right Hermitian and thus maps
Hermitian operators to Hermitian operators. In particular, we have that A×(I) is a Hermitian
operator.

A superoperator is trace preserving if, under the ordinary action, it leaves the trace unchanged,
i.e., if tr(A) = tr(A(A)) = tr([A×(I)]†A) for all operators A. Thus A is trace preserving if and only
if A×(I) = I.

A superoperator is said to be positive if it maps positive operators to positive operators under
the ordinary action. Since any Hermitian operator can be written as the difference of two positive
operators, it follows that a positive superoperator maps Hermitian operators to Hermitian operators
and thus, by the above theorem, that a positive operator is left-right Hermitian.

A positive superoperator is trace decreasing if it does not increase the trace of positive operators,
i.e., if tr(E) ≥ tr(A(E)) = tr([A×(I)]†E) = tr(A×(I)E) for all positive operators E. Since any one-
dimensional projector is a positive operator, a positive superoperator must satisfy 〈ψ|A×(I)|ψ〉 ≤ 1
for all |ψ〉, which implies that A×(I) ≤ 1. We can see that this is a sufficient condition for A to be
positive by writing E in its eigencomposition:

tr
(

A×(I)E
)

=
∑

j

λj〈ej |A×(I)|ej〉 ≤
∑

j

λj = tr(E) . (103)

Our conclusion is that a positive superoperator A is trace decreasing if and only if A×(I) ≤ 1.
A superoperator A is completely positive if it and all its extensions I ⊗ A to tensor-product

spaces, where I is the unit superoperator on the appended space, are positive. We show in the
main text that A is completely positive if and only if it is positive relative to the left-right action,
i.e., (A|A|A) ≥ 0 for all operators A, which is equivalent to saying that A is left-right Hermitian
with nonnegative left-right eigenvalues. This is the reason why the left-right action has physical
significance. A quantum operation is a trace-decreasing, completely positive superoperator.

Since a superoperator is left-right Hermitian if and only if it has an eigendecomposition as
in Eq. (96), we can conclude, by grouping together positive and negative eigenvalues, that being
left-right Hermitian is equivalent to being the difference between two completely positive super-
operators. Using the above theorem, we have that a superoperator takes all Hermitian operators
to Hermitian operators if and only if it is the difference between two completely positive superop-
erators. In particular, a positive superoperator is the difference between two completely positive
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superoperators. A positive operator that is not completely positive has one or more negative
left-right eigenvalues.

A completely positive superoperator has a left-right eigendecomposition,

A =
∑

α
µα|τα)(τα| =

∑

α

√
µατα �

√
µατ †α =

∑

α
|√µατα)(

√
µατα| , (104)

in which all the eigenvalues µα are nonnegative. The operators
√

µατα are special Kraus operators,
special because they are orthogonal. We can immediately get two useful results. First, notice
that there are at most D2 Kraus operators

√
µατα in the Kraus decomposition associated with the

eigendecomposition. If use use this Kraus decomposition to construct a measurement model for a
quantum operation, we will need an ancilla with at most D2 dimensions if A is trace-preserving and
at most D2 + 1 dimensions if A is strictly trace-decreasing. Thus we conclude that any quantum
operation can be realized by a measurement model where the ancilla has at most these numbers of
dimensions. Second, we can generalize the HJW theorem for decompositions of positive operators
to a similar statement about Kraus decompositions of complete positive superoperaators: two sets
of operators, {Aα} and {Bβ}, are Kraus operators for the same completely positive superoperator
if and only if there is a unitary matrix Vβα such that

Aα =
∑

β

VαβBβ . (105)

Appendix C. Mixed-state measurement models and extreme oper-
ations

The set of quantum operations is a closed and bounded convex set. We claim that the extreme
points are those operations that do not have a mixed-state measurement model.

Suppose first that A has a mixed-state measurement model, i.e.,

A(ρ) = trA(P Uρ⊗ σU †) =
∑

k

λktrA(P Uρ⊗ |ek〉〈ek|U †) =
∑

k

λkAk(ρ) , (106)

where the ancilla projector P has eigendecomposition

P =
∑

j

|fj〉〈fj | . (107)

Clearly A is a convex combination of the quantum operations Ak that arise from the eigenstates
of the ancilla’s initial density operator σ, i.e.,

Ak(ρ) = trA(P Uρ⊗ |ek〉〈ek|U †) =
∑

j

AkjρA†kj , (108)

where the Kraus operators are defined by

Akj ≡ 〈fj |U |ek〉 . (109)

Suppose now that a quantum operation,

A =
∑

k

λkAk , (110)
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is a convex combination of K operations, Ak, which are defined by Kraus decompositions

Ak =
∑

j

Akj �A†kj . (111)

For convenience we make all the Kraus decompositions have the same number of Kraus operators,
say N , by appending zero operators where necessary. We can generalize the Kraus representation
theorem to construct a mixed-state measurement model for A.

First define the operator

Ek ≡
N

∑

j=1

A†kjAkj ≤ 1 (112)

for each k, and associate one more operator,

Ak0 ≡
√

1− Ek , (113)

with the kth Kraus decomposition. This allows us to write a completeness relation for each k,

N
∑

j=0

A†kjAkj = 1 . (114)

Now pick an ancilla whose Hilbert-space dimension is KN . It is convenient to regard the ancilla
as being the tensor product of two systems, the first having dimension K and the second having
dimension N . Now we reprise the steps in the proof of the Kraus representation theorem in this
more general context.

Choose orthogonal ancilla pure states |ek〉〈ek|, k = 1, . . . ,K, and choose any product orthonor-
mal basis |fk〉 ⊗ |gj〉 for the ancilla, where k = 1, . . . , K and j = 0, . . . , N . Partially define a joint
QA operator U by

U |ψ〉 ⊗ |ek〉 =
N

∑

j=0

Akj |ψ〉 ⊗ |fk〉 ⊗ |gj〉 ⇐⇒ 〈fl| ⊗ 〈gj |U |ek〉 = δklAkj . (115)

The operator U is defined on the (D ×K)-dimensional subspace HQ ⊗ RK , where RK is the K-
dimensional ancilla subspace spanned by the vectors |ek〉. This partial definition preserves inner
products,

(〈φ| ⊗ 〈el|U †)(U |ψ〉 ⊗ |ek〉) =
N

∑

j,j′=0

〈φ|A†lj′Akj |ψ〉 〈fl|fk〉〈gj′ |gj〉
︸ ︷︷ ︸

= δklδjj′

= δkl

〈

φ
∣

∣

∣

∣

N
∑

j=0

A†kjAkj

︸ ︷︷ ︸

= 1

∣

∣

∣

∣

ψ
〉

= δkl〈φ|ψ〉 ,

(116)
which means that U maps the subspace HQ ⊗ RK unitarily to a (D × K)-dimensional subspace
SK of HQ ⊗HA. We can extend U to be a unitary operator on all of HQ ⊗HA by defining it to
map the subspace HQ ⊗ R⊥, where R⊥ is the ancilla subspace orthogonal to RK , unitarily to the
subspace orthogonal to SK .

With this definition of U , we have

A(ρ) =
∑

k

λkAk(ρ)

=
∑

k

λk

N
∑

j=1

AkjρA†kj

19



=
∑

k

λk
∑

l

N
∑

j=1

〈fl| ⊗ 〈gj |U |ek〉ρ〈ek|U †|fl〉 ⊗ |gj〉

= trA

(

(

∑

l

N
∑

j=1

|fl〉〈fl| ⊗ |gj〉〈gj |
)

Uρ⊗
(

∑

k

λk|ek〉〈ek|
)

U †
)

= trA(P Uρ⊗ σU †) , (117)

where

P ≡
∑

l

N
∑

j=1

|fl〉〈fl| ⊗ |gj〉〈gj | (118)

is an ancilla projector and
σ =

∑

k

λk|ek〉〈ek| (119)

is the initial ancilla density operator. Thus we have constructed the required mixed-state measure-
ment model for A.

What we have shown is that an operation is not an extreme point, i.e., can be written as a convex
combination of other operations, if and only if it can be realized by a mixed-state measurement
model. Alternatively, we can say that an operation is an extreme point if and only if it cannot be
realized by a mixed-state measurement model.

20


